Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Physiologica Sinica ; (6): 187-195, 2019.
Article in English | WPRIM | ID: wpr-777197

ABSTRACT

Renin-angiotensin system (RAS) is involved in the regulation of vascular smooth muscle cell (VSMC) tension. Angiotensin II (Ang II) as the main effector molecule of RAS can increase the intracellular Ca concentration and cause VSMCs contraction by activating angiotensin II type 1 receptor (AT1R). The large-conductance Ca- and voltage-activated potassium (BK) channel is an essential potassium channel in VSMCs, playing an important role in maintaining membrane potential and intracellular potassium-calcium balance. The BK channel in VSMCs mainly consists of α and β1 subunits. Functional BKα subunits contain voltage-sensors and Ca binding sites. Hence, increase in the membrane potential or intracellular Ca concentration can trigger the opening of the BK channel by mediating transient K outward current in a negative regulatory manner. However, increasing evidence has shown that although Ang II can raise the intracellular Ca concentration, it also inhibits the expression and function of the BK channel by activating the PKC pathway, internalizing AT1R-BKα heterodimer, or dissociating α and β1 subunits. Under some specific conditions, Ang II can also activate the BK channel, but the underlying mechanism remains unknown. In this review, we summarize the potential mechanisms underlying the inhibitory or activating effect of Ang II on the BK channel, hoping that it could provide a theoretical basis for improving intracellular ion imbalance.


Subject(s)
Humans , Angiotensin II , Physiology , Calcium , Physiology , Large-Conductance Calcium-Activated Potassium Channels , Physiology , Muscle, Smooth, Vascular , Cell Biology , Myocytes, Smooth Muscle , Physiology , Renin-Angiotensin System
2.
Acta Physiologica Sinica ; (6): 343-353, 2018.
Article in Chinese | WPRIM | ID: wpr-687819

ABSTRACT

Myocardial fibrosis (MF) is an important pathological process of cardiac remodeling in patients with heart failure; however its etiology has not been clear. It has been known that the angiotensin II type 1 receptor autoantibody (AT1-AA) is present in patients with heart failure, but it is unclear whether this antibody directly causes MF. In this study, we investigated the role of AT1-AA in MF and its effects on cardiac fibroblasts (CFs). The AT1-AA positive rat model was established by active immunization method, and the measurement of indexes were made in the 8th week after active immunity. The results of heart echocardiography showed that the cardiac systolic and diastolic functions of AT1-AA positive rats were impaired with reduced left ventricular wall thickness and enlarged heart chambers. HE staining results showed that the myocardial fibers were disorganized and ruptured, and Masson staining revealed that the area of collagen fibers around the myocardium and coronary arteries was significantly increased in AT1-AA positive group compared with that of the control group (P < 0.05). Moreover, primary CFs isolated from neonatal rats were cultured and treated with AT1-AA for 48 h. CCK-8 and immunofluorescence staining results showed that AT1-AA enhanced proliferation rate of CFs (P < 0.001), and Western blot results showed that AT1-AA significantly increased expressions of collagen I (Col I), Col III, matrix metalloproteinase-2 (MMP-2) and MMP-9 in CFs (all P < 0.05). Taken together, these results suggest that AT1-AA may induce MF and cardiac dysfunction via activating CFs.

SELECTION OF CITATIONS
SEARCH DETAIL